Counseling Center
University of Maryland at
College Park
Summer Study in Engineering
for High School Women
Julie L. Goldberg and
William E. Sedlacek
Research Report #16-95
This program was funded by
the A. James Clark School of Engineering and
the Maryland Space Grant
Consortium
2
Counseling Center
University of Maryland at
College Park
College Park, Maryland
Julie L. Goldberg and
William E. Sedlacek
Research Report # 16-95
Summary
Since 1975, the A. James Clark
School of Engineering at the University of Maryland at College Park (UMCP) has
offered a six-week academic summer program for female high school
students interested in engineering. In the summer of 1994, the "Summer Study
in Engineering for High School Women" was held on the UMCP campus. The
program encompassed two fundamental goals. The first goal was to expose
promising young women to college level engineering study while they were still
in high school so that they would have the opportunity to determine whether
they want to pursue engineering as their field of study in college. The second
goal was to provide a positive learning experience that would foster the
students'self-confidence. Together the goals were designed to help young
women believe that they can make significant contributions to the field of
engineering
In order to meet the first goal, the
program was designed to teach introductory engineering principles through an
experiential learning process. Fundamental concepts were conveyed through hands-on
design projects, field trips, and laboratory work. In order to meet the second
goal, the program included female role models who offered genuine examples of
successful careers in engineering, a critical mass of peers who shared similar
aspirations to become engineers, and a sense of community to sustain students
emotionally and academically. Ultimately, the program was designed to create a
unique learning community for students to take risks, challenge themselves, and
develop confidence in their ability to pursue a career in engineering.
Evaluation of the program
demonstrated that it was comprehensive and successfully met its goals. The
majority of the participants reported that they had gained a greater understanding
of what engineering is, what engineers do, and their career options in the
field of engineering. The majority also reported an increase in self-confidence.
Thus, the program successfully provided a meaningful and positive learning
experience for 30 high school women that ultimately enhanced their knowledge of
engineering and their self-confidence in becoming an engineer.
3
Research
has indicated that the probability of women losing interest in science and
engineering increases as they progress through their academic education
("Students Mentoring," 1992). The transition between high school and
college is a crucial point where many young women engaged in the applied
sciences and engineering cease their participation. In January 1994, for
example, out of all the women entering college in the United States, only 2.9%
planned to major in engineering (Blaisdell, 1994). This phenomenon, termed the
pipeline model, underscores the need to bridge the gap between secondary school
and higher education. Thus, early intervention is needed to maintain young
women's interest in engineering and the applied sciences as well as to foster
their self-confidence in pursuing a career in engineering.
In
response to this need, in the summer of 1994, the A. James Clark School of
Engineering at the University of Maryland at College Park (UMCP) and the
Maryland Space Grant Consortium implemented a six-week summer program for
young women who just completed their junior year in high school. The 1994
"Summer Study in Engineering Program for High School Women" was held
from July 17 to August 26, 1994 at UMCP. Thirty women attended the six-week
academic program and enrolled in two college level courses. The curriculum was
designed to teach female high school students introductory engineering
principles through an experiential learning process. Upon successful completion
of the program, students earned six credits towards their college degree.
The
following report is an evaluation of this pre-college engineering program
for high school women. First, the report provides a description of the program
goals, the recruitment and selection process, and the three facets of the
program (i.e., academic, parental, and social). Secondly, a description of the
evaluation method and results are provided.
4
As stated in the 1994 program brochure, one of the primary goals of the 1994 "Summer Study in Engineering for High School Women" was to expose promising young women to college level engineering study while they were still in high school so that they would have the opportunity to determine whether they want to pursue engineering as their field of study in college. The program's second goal was to provide a positive learning experience that would foster the students'self-confidence. Together the goals were designed to help young women believe that they can make significant contributions to the field of engineering. Recruiting Women Students
Research
has shown that intervention strategies implemented prior to the transition
between high school and college are highly effective in recruiting women into
engineering. Two follow-up studies were conducted in 1980 and 1983 of 350
women who participated in the six-week summer program during the late
1970s. The study determined that 70% of the women subsequently pursued careers
in science and engineering (Berman, 1994). In an effort to continue such
important interventions, the "Summer Study in Engineering for High School
Women" targeted young women who were entering their senior year in high
school and were in the process of choosing a college major.
In
order to recruit qualified applicants, brochures were sent to high schools in
Maryland, Northern Virginia, Washington D.C., Pennsylvania, New Jersey, and New
York. Seventy-nine percent of participants reported that they had learned
about the program through resources at their high school: 50% from their school
guidance department and 29% from a science teacher. Students also indicated
that they learned about the program from other sources: parents (4%),
5
publications (i.e., "Summer Search 1994")
(8%), staff at the University of Maryland (5%), and friends (4%).
Ninety-one
students from across the United States applied to the program. Thirty (33%) of
the applicants were accepted. Admission was based on the student's high school
grade point average, standardized test scores, a letter of recommendation (from
a teacher, counselor and principal), and a personal statement. Students were
selected based on criteria which included both student qualifications (i.e.,
academic performance in high school, motivation and interest in math and
science, and willingness to meet new challenges) and issues of diversity (i.e.,
the distribution of the students' nationality, home county, and high school).
Of the
students selected for the program, the mean S.A.T. math test score was 640 and
mean S.A.T. verbal test score was 570. The mean high school grade point average
of the participants was 3.63. The majority of the applicants selected for the
program had completed mathematics courses in the following areas: algebra I,
algebra II, trigonometry, geometry, and precalculus or calculus. In addition,
twenty-five (83%) of the students were from Maryland while the remaining
five (17%) were from states including Virginia, New Jersey, Pennsylvania,
Illinois, and Connecticut. Students selected from Maryland were from the
following counties: Anne Arundel, Baltimore, Cecil, Frederick, Howard,
Montgomery, Prince George's, and Wicomoco. Finally, the program included students
from traditionally underrepresented groups in engineering: 20% African-American
(6), 17% Asian-American (5), 3% Hispanic-American (1), and 10%
other (3). The remaining 50% of participants were Caucasian (15).
6
Women
high school students who enter the summer program often come from their high
school courses with a strong fundamental base in the basic math and science
principles but lack knowledge of how these skills can be applied within the
engineering discipline. The majority of students do not know what engineers do.
As a result, many are not aware that engineering is a viable career path that
allows them to utilize their skills in multiple creative and challenging ways.
In
order to address this dilemma, the pre-college program was designed to
expose students to the different disciplines within the field of engineering.
During the six weeks, the students completed two college-level academic
courses, "Introductory to Engineering Design" (ENES 100) and
"The World of Engineering" (ENES 121 W), which provided them with an
opportunity to develop an understanding of the fundamental principles of
engineering. Through a wide range of learning activities (laboratory work,
field trips, team design project, and computer classes), students were engaged
in an active process of enhancing their ability to apply their skills, solve
problems, and work with others.
During
the course of the summer, the students were challenged to take risks and gain
trust in their own ability. Thus, students needed a supportive learning
enviornment which encouraged them to challenge themselves. Based on the work of
Miller (1993), who examined the essential component of a encouraging learning
environment for female students, the following elements were included in the
six-week program: female role models who offered genuine examples of
successful careers in engineering, a critical mass of peers who shared similar
aspirations to become engineers, and a sense of community to sustain students
emotionally and academically.
7
The
program included an academic program, a parental program, and a
social/residential program. The following section summarizes these three
components of the pre-college program. Academic Program
The
academic program included two college-level courses, "Introduction
to Engineering Design" (ENES 100) and "The World of Engineering"
(ENES 121 W). The engineering design course, "Introduction to Engineering
Design" (ENES 100), introduced students to the fundamental principles and
concepts of engineering science. The curriculum included course work on
engineering principles (i.e., free body diagrams, mechanical equilibrium
analysis, material selection and engineering drawing), computer skills, and a
design project. Students were introduced to concepts on how to apply computer
software programs (i.e., WordPerfect 5.1, QuatroPro, and Autosketch-Tutorial
3.0) to solve engineering problems.
The
course curriculum was based on a project realization approach where students
designed and manufactured a human powered water pump. Students were organized
into five teams of six students. Each group worked as a team to design the pump
by applying concepts of engineering acquired from class lectures. Computer
programs were used to prepare the design documents of their team pump. Students
were required to keep journals of their team meetings. In addition, teams were
expected to work collaboratively on presenting their preliminary design
projects and their final design package.
As
outlined in the course syllabus for the course, "The World of
Engineering" (ENES 121 W), "the primary objective of this course is
to demonstrate the role of scientific and mathematical principles in the
creation of engineering design solutions." This was accomplished by a
curriculum that included lab demonstrations, hands-on learning, computer
simulations, and video presentations. There were eight laboratory
demonstrations which introduced the students
8
to the various engineering disciplines (i.e.,
Aerospace, Civil, Electrical, Fire Protection, and Mechanical Engineering). The
topics addressed in the laboratory demonstrations covered a wide range
including the following: resolution of forces, fire hazard analysis,
numerically controlled machining, ground water hydrology, and hazardous waste
clean-up.
In
order to provide students with an opportunity to interact with practicing
engineers and develop an understanding of the application of fundamental
theories, students made site visits to the National Institute of Standards and
Technology and the John Hopkins Physics Laboratory. In addition, students were
able to hone their writing skills by completing assigned lab reports for lab
experiments and site visits. Finally, a female physicist from John Hopkins
Applied Laboratory spoke to the students on current career topics for women in
engineering
Parents
were invited to actively participate in their child's experience. They were
given the opportunity to visit the campus and to attend an orientation at the
beginning of the program. In addition, they were encouraged to attend their
daughter's presentation of the preliminary design and the final demonstration
of the human powered water pumps.
Social/Residential Program.
Throughout
the six weeks, all 30 students lived in six apartments on the UMCP campus. Each
student had her own bedroom in a suite with four other members of the program.
The program's student advisor and resident assistant, lived with the students
in the residence hall. Social activities were organized by the resident
assistant including a celebration dinner which was held following the mid-semester
presentation of project designs. Other social opportunities were offered to the
students (i.e., the use of gym facilities and free tickets to a local amusement
park).
9
In
order to assess the quality and effectiveness of the program, the program
evaluation included both a focus group and a survey. All thirty students
participated in one ninety-minute focus group in the fourth week of the
program. The following topics were discussed: (1) students' present level of
interest in engineering, compared with their interest at the beginning of the
program, (2) what students found most valuable about the program, and (3)
suggestions for improving the program for next year. In addition, a surveys was
completed on the final day by 28 (93%) students. All of the survey questions
were based on a five-point Likert Scale (i.e., 1 = Poor and 5 =
Excellent). The three types of scales included in the evaluation were: poor to
excellent, strongly disagree to strongly agree, and very low to very high.
The
following summary is an evaluation of the program's efforts to meet the two
goals of the six-week summer program: (1) to expose promising young women
to college level engineering study while they were still in high school so that
they would have the opportunity to determine whether they want to pursue
engineering as their field of study in college and (2) to provide a positive
learning experience that would build the students'self-confidence to
become an engineer.
Program Goal One: To Expose High School Women to the
World of Engineering
In
order to successfully meet the program goal of exposing high school women to
the world of engineering, students completed two academic courses:
"Introduction to Engineering Design" (ENES 100) and "The World
of Engineering" (ENES 121 W). The courses included comprehensive
coursework which exposed students to the expectations of an undergraduate
engineering curriculum and the daily tasks of a practicing engineer. For example,
students had
1 Due to rounding, item percentages may not add up to 100%.
10
an opportunity to design, assemble, and test a human powered water pump, to master computer software, to complete labs in various engineering disciplines, and to develop skills in writing lab reports. In essence, the courses were designed to encourage students to gain a greater understanding of what engineering is and what engineers can do. In addition, the courses were intended to expose the students to the multiple possibilities within an engineering career and ultimately encourage them to consider engineering as a possible and viable career option.
Students'
Responses to ENES 100 (Introduction to Engineering Design). When students
were asked to respond to whether the hands-on project of designing the
human powered water pump affected their learning, 97% reported that it had a
positive or very positive influence on their learning. Only 4°/a of the
students reported that the hands-on approach had a very negative
influence (mean = 4.18 and standard deviation .77). One student commented in
the survey: "I enjoy hands-on activities because that way I feel
more involved and can better understand what I am doing." Another student
added, "It made the learning experience so much richer and helped me to
understand the material." Finally, a third student reported, "I've
learned so much from our pump construction. If it were a lecture-type
class, it would not have made the program special." Some students
elaborated on this topic in the focus group. One student stated, "I really
enjoyed the program. I liked applying things to practical uses, and I just
enjoyed everything we had done. It makes me feel that I am using what I learned
and even what I am learning now."
Students'
Responses to ENES 121 W ( The World of Engineering). In the final written
survey, all of the students reported that lab demonstrations and site visits
included in the curriculum provided positive learning experiences. During the
formal focus group discussion, students described the significant impact of the
site visits on their experience. One student commented, "I liked the field
trip at NIST. It allowed us to talk to actual engineers who were in
11
the field."
Another student added, "I think that the visits were helpful to
actually see people and talk with them about what they do. It helped me to see
equipment they made. I asked them what would be a good major, and I got advice
that was helpful."
Working
in Teams. When students were asked how the team approach to engineering
design affected their learning, 89% reported that the team approach had a
positive or very positive influence on their learning experience, 4% reported
not much influence, and 4% reported a negative influence (mean = 4.19 and
standard deviation .66). Student comments on the survey included: "I think
it gave a good overview on what life is really like since in jobs, people do
work in groups." Another student commented, "Despite minor problems,
working in a group gives new insight and ideas that an individual cannot see.
It helped me to learn how to cooperate and compromise."
Increased
Knowledge. The majority (82%) of students strongly agreed or agreed that
based on their experience in the program, they had a better understanding of
what engineering is and what an engineer can do. Seven percent of the students
reported that they were neutral and 1 I % disagreed or strongly disagreed (mean
= 4.07 and standard deviation = 1.05). Most students (79%) also agreed or
strongly agreed with the statement that they had a better understanding of how
engineering is used in the "real world." Eighteen percent were
neutral, and 4% strongly disagreed (mean = 4.07 and standard deviation = .94).
In addition, 79% of the students indicated that they strongly agreed or agreed
that they had more knowledge about the types of career choices they will have
in engineering. Fourteen percent were neutral, and 8% disagreed or strongly
disagreed (mean = 3.96 and standard deviation = .96).
Career
Choices. When asked to determine the likelihood of considering engineering
as a college major, 68% reported that it was very high. Eleven percent
predicted that there was not
12
much likelihood (mean = 3.70 and standard deviation
1.30). Students discussed in the focus
group the important role the program played in
helping them explore different career choices in
engineering. One student stated,
I
didn't think I was going to like [engineering] so I didn't think I was going to
want to be
an
engineer, but seeing all the different options is exciting. You know how we get
a little
overview
of everything. That has made me kind of interested, and it tells me that there
is
more
than just using a jigsaw to engineering. I like it now.
Another student commented,
I
came here just to see if maybe I would major in biomedical engineering or
something
like
that. [The program] has kind of helped me to define what I do and don't want to
do.
It
has kind of told me what engineering is really all about. It helped me gain an
interest
in
biomedical engineering.
Program Goal Two: To Provide a Positive Learning
Experience That Enhances Students'
Confidence.
In
order to meet the second goal of the program to provide a postive learning
experience
that enhances students' confidence, the program
attempted to foster a supportive learning
environment. According to Miller (1993), the basic
elements needed to build and maintain a
supportive learning environment for women studying
engineering include the following: role
models who offered genuine examples of successful careers
in engineering, a critical mass of
peers who share similar aspirations to become
engineers, and a sense of community to sustain
students emotionally and academically. Ultimately,
these elements can create a unique learning
community for students to take risks, challenge
themselves, and develop confidence in their
ability to pursue a career in engineering.
13
Female
role models. The pre-college women's engineering program included
various role models from various backgrounds, disciplines, and stages in their
careers for the students to interact with and learn from. The lab instructor
was a female engineering graduate student at UMCP, and the camp resident
counselor and teaching fellow were female engineering students in the
undergraduate program at UMCP. The lab assistant was an engineering student
from Paris, France. The program guest speaker was a female engineer from the
Applied Physics Lab at Johns Hopkins.
Inclusion
of such a wide range of role models had a positive influence on the students
experience; 78% of the students reported that working with women engineers had
a positive or very positive influence on their interest in engineering (mean =
4.00 and standard deviation = .62). In the written comments of the survey, one
student wrote "The female instructor and guest speaker were great models -
both balance a career and a life and love engineering."
A
critical mass of like-minded peers who share similar aspirations to
become engineers. The program included a "critical mass" (30% or
higher) of young women interested in engineering. When asked to indicate their
reasons for attending the program, 93% indicated that their personal interest
and ability in engineering had a significant impact on their decision. One
student explained the importance of being with peers who have the same
aspirations, "I like the fact that there are so many other people who are
all interested in engineering so you don't feel like a nerd. I am in a science
and engineering program at school but people there are like 'You, be an
engineer? What? Here we are all the same."
The
majority of students reported that being with female peers had a positive or
very positive effect on their learning experience. One student stated in the
focus group, "The good thing about this program is that there is a lot of
support for women in engineering. In my physics
14
class this year there were only six girls out of
thirty people." Another student responded to this comment by adding,
" I like a class with all girls. I don't feel pressure to not ask `brainy
questions."'
Community
among students to sustain them emotionally and academically. Students
explained that the relationships developed within teams were maintained outside
of the classroom. Many students revealed in the focus group that there was a
unique sense of community that existed among the students. One student
explained,
I
think it is neat because in my high school ...everyone is competing to be
number one.
Here
it seems like everyone is working together to help each other out. I think the
pump
project
with the group has really happened because everyone is trying to help each
other.
I
like that a lot better.
One
of the most important arenas for students to build a connection with one
another was in the residence housing. Students were asked to rate their overall
experience of living on campus. Eighty-five percent of the students
stated that the quality of their experience was high or very high (mean = 4.21
and standard deviation = .79). One student illustrated her appreciation for the
on-campus living experience, "I like that everybody must live here.
I have gotten to know people better in four weeks than it took me to know some
of my really good friends in school. "
Increase
in self-confidence. Most students indicated that based on their
experience in the program, they felt more confident in their engineering skills
(68% strongly agreed or agreed, 18% were neutral, and 14% disagreed or strongly
disagreed, mean = 3.57 and standard deviation = 1.03). A similar pattern was
revealed when students were asked if having completed the program, they felt
more confident in their ability to be an engineer. More than half of the
15
students strongly agreed or agreed. One student
stated in the focus group, "I like the way we learned about computer
programs. Before I was here, I never used any computers at all. I feel like I
will get a head start on college so I can feel more confident."
Students
asserted that their increased self-confidence extended beyond the
classroom. One student explained in the focus group, I feel more aware of
myself... It just really helps me feel more confident about myself. To know
that I am really going to be something and I am really going to be working for
something helps me to feel worth more.
Evaluation
of the six-week "1994 Summer Study In Engineering for High School
Women Program" demonstrated that it was highly comprehensive and
successfully met its goals. Results of the survey and focus group indicated
that the majority of the students gained a greater understanding of what
engineering is, what engineers do, and knowledge about the various career
within the field of engineering. In addition, the majority experienced an
increase in their self-confidence to pursue a career in engineering.
The
high quality of the program was also demonstrated in the students' rating of
the program. When students were asked to rate the overall program, 90% reported
that it was good to excellent (mean = 4.3 and standard deviation = .65). In
addition, 96% of all participants stated that they would recommend the program
to other students. On the final day, more than one quarter of all the students
(26%), reported that they had already recommended the program to another
person.
In conclusion, the program provided a valuable learning experience for 30 high school women. The supportive nature of the program and the comprehensive curriculum invited
16
students to explore and challenge themselves and as a result, learn more about the field of engineering as well as their own ability to become an engineer. Thus, the "Summer Study in Engineering for High School Women" played an indispensable role in recruiting and retaining young women in the field of engineering.
17
Berman, M. (1994). Executive
Summary - Sloan Grant Proposal for Women in Engineering. College
Park, Maryland: The University of Maryland, The A. Clark School of Engineering.
Blaisdell, S. (1994, June) Factors
in the underrepresentation of women in science and engineering: A Review of the
literature. Paper presented at the National Women Engineering Program
Advocacy Network Conference, Washington, DC.
Miller, A. (1993). Introduction:
Gender equity in math and science. Initiatives, 55(2), 1 - 3.
Students mentoring students:
recruiting and retaining women in science and engineering,
(1992,
June) . Paper presented at the meeting of the Mentoring Training Program at
Salisbury State University, Salisbury, MD.